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I RESEARCH MEMORANDUM 
I 

i SOME EFFECTS OF ROUGHNESS ON STAGMION-POINT HEAT 

!IXANSFER AT A MACH NLlMBER OF 2, A STAGNATION 

1 
TEMI?ERATURE OF 3, 530° F, AND A REYNOLDS 

NUMBER OF 2.5 x 106 PER FOOT 

By H. K u r t  S t rass  and Thomas W .  Tyner 

A l imited  investigation has  been  conducted t o  determine some ef fec ts  
of surface  roughness on heat   t ransfer   a t   the   s tagnat ion  point .  The t e s t s  
were made in  the  ceramic-heated je t   ( labora tory  model) at a Mach  number 
of 2, a stagnation  temperature of 3,530' F, and  a stream Reynolds number 
of 2.5 x 10 6 per  foot.  The results  are  given as functions of the  root-  
mean-square  roughness,  roughness  Reynolds number, and macroscopic  surface 
area  increase. These data  show l i t t l e   e f f e c t  of surface  roughness upon 
the  heat   t ransfer   for  roughness  values below approximately 40 microinches 
In   the  roughness  range greater  than 40 microinches,  the  heat  transfer was 
shown t o  be a function of the  surface  roughness and roughness  Reynolds 
number. A t  very  large  values of surface  roughness  (equal  to, o r  l a rger  
than,  the  displacement  thickness of the boundary layer  at the  stagnation 
poin t )   the   da ta   t end   to  show tha t   the   hea t   t ransfer  i s  dependent upon 
the  macroscopic  surface  area. 

I INTRODUCTION 

;: 

i 
I Some recent  preliminary  experiments have indicated  that   the  heat 1 t ransfer   to   the   face  of a bluff body is markedly affected by t h e   d e t a i l  

shape  of the  surface.   Fir ing  tes ts  from a high-velocity gun at approxi- 
mately 6,000 f t / s ec  have shown that  shallow  grooves  in  the  face of f lat-  
face magnesium p ro jec t i l e s   a r e   su f f i c i en t   t o  cause  burning of the  pro- 
j e c t i l e s ,  whereas unmarked p ro jec t i l e s  showed no evidence  of  burning. 
S imi l a r  t e s t s  made ik the  ceramic-heated je t   ( labora tory  model) a t  a 
Mach  number of 2 and stagnation  temperature  equal t o  approximately 

I' 
J 
i 

! 3,500° F showed tha t   t he  time t o  melt of f l a t - f a c e   s t e e l  specimens was . .  , . , .. . . ,  , I  

, i: 
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decreased when the  surface  area was increased by machin& grooves  into 
the  face.  

In  order t o  examine more closely  the  re la t ionship between the  sur- 
face   chasac ter i s t ics  and the  heat ing  ra te  of f lat-face  bodies,  a se r i e s  
of t e s t s  were m a d e  i n   t h e  ceramic-heated je t   ( labora tory  model)  of 
10 f la t - face  models with surface  roughnesses  varying from  about 7 micro- 
inches r m s  t o  macroscopic  values.  (See  table I. ) These t e s t s  were con- 
ducted a t  a Mach number of 2 and  a stagnation  temperature  equal t o  approxi- 
mately 3,330' F. Detai led  tes t   condi t ions  are   given  in   table  11. 

SYMBOLS 

cP specif ic   heat  of Inconel, Btu/lb-OF 

h heat- t ransfer   coeff ic ient ,  Btu/( sq f t )  (sec)  ( O F )  

T temperature, O F  

t t ime  af ter  start  of t e s t ,   s e c  

w r a t i o  of model weight t o  projected  area,   lb/sq f t  

Subscripts: 

stag  stagnation-point  conditions 

B rear   surface 

F front   surface 

MODELS AND TESTS 

Gener a 1  Des c r   ip t   ion  

The t e s t  models were 3/4-inch-diameter  Inconel disks with a nominal 
thickness of 1/16 inch  before surf ace  preparation. The outer  surface of 
each model was subjec ted   to  a different  treatment s o  that  the  range of 
surface  roughness  vasied from  about 8 t o  13,700 microinches. All models 
were instrumented with three chromel-alumel  thermocouples welded t o   t h e  
back face of the  disks  as shown i n   f i g u r e  1. The models were cemented 
t o  molded  aluminum oxide  insulating  supports  with  Sauereisen 76 cement. 
Contact  area between the model and support was l imi ted   to   the   ou ter  edge 
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by a tapered  clearance  hole  through  the  support;  errors  resulting from 
heat l o s s  to   the  support  were thus minimized. A t yp ica l  model, i t s  
insulating  support, and t e s t   s t i ng   a r e  shown in f igure 2. 

The individual model surfaces  are  described in t ab le  I and by  means 
of'  photographs  and  sketches in   f i gu res  3 t o  12. Figure 3 shows a l l  the 
models  which, with  the  exception of models 4 and 5 ,  m e  numbered in order 
of decreasing  surface  roughness,  the  values of  which are  presented  in 
tab le  I. 

All the  models were t e s t ed   i n   t he  ceramic-heated j e t   ( l abo ra to ry  
model) at a Mach  number of 2, a stagnation  temperature of approximately 
3,330' F, a stream Reynolds number  of 2.5 x 10 6 per  foot,  and a j e t  diam- 
e t e r  of 1 inch. During a l l   t e s t s ,   t h e  models  were approximately 0.25 inch 
downstream  from the  nozzle.  Reference 1 gives a complete description of 
t h e   j e t  and i ts  operation. 

Model measurement.-  Measurements of surface  roughness and area were 
obtained  in  several  ways inasmuch as no one method was appl icable   to   the 
range of roughness  studied  here.  This  procedure  also gave  a  check  on 
the  various methods where t h e i r  regimes of applicability  overlapped. 

In  the  case of  models 1, 2, and 3 ,  the  measurements  were made 
op t i ca l ly  by using  conventional  techniques  with an accuracy  of  about 
+0.001 inch. These  measurements were l imi t ed   t o   t he  macroscopic d e t a i l  
on the assumption tha t   hea t ing   e f f ec t s   a t t r i bu tab le   t o   t he   ove ra l l   pa t t e rn  
of microscopic d e t a i l  were negl ig ib le   in  comparison with  those  caused by 
the macroscopic d e t a i l .  

Roughness  measurements on models 4 t o  8 were made  by u s i n g  the 
Physicists  Research Co. Profilometer, Model No. I", Type Q, which gives 
average  roughness  values i n  microinches rms. In addition,  roughness 
values were obtained by sectioning  duplicate models  and taking  the nec- 
essary measurements  from the  photomicrographs of the  cross  sections which 
are  reproduced  in  f igure 12. The models  were prepared  for  sectioning by 
plat ing a th in   l aye r  of  copper upon the  surface on top of which was 
p la ted  a thicker   layer  of nickel.  The dx&k l i n e  shown i n  the  photomicro- 
graphs  reproduced in   f i gu re  12 i s  the copper p la t ing  and each  picture is 
arranged i n  such a manner that t h e   a r e a   M e d i a t e l y  below t h i s   l i n e  is 
the  model mater ia l  and the  area above the   l i ne  i s  the  nickel   plat ing.  
The t rue  surface of the  model then   ex is t s   a t   the  lower edge  of the  dark 
l i n e .  M a x i m u m  accuracy  of measurement was obtained by making the  meas- 
urements  from  10-diameter  enlargements made from the  glass  photomicro- 
graph  negat ives .   Sqface  . i r regular i t ies  as small as 1 microinch  could 
be detected by t h i s  method. The cross  sections were polished and  photo- 
micrographed by conventional methods. 
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The root-mean-square  value of roQJhness i s  the  standard  parameter 
used in denoting  the  quality of surface  f inishes.   This method gives a 
special  average of heights above  and  below a mean surface. It tends t o  
emphasize the  higher  peaks  since a ser ies  of high  nmrow  peaks would 
have l i t t l e   e f f e c t  on positioning  the mean l ine   bu t  would greatly  influence 
the  surface  quali ty.  A more detailed  discussion of these   e f fec ts  may be 
found in   references 2 and 3 .  

The increase i n  surface  area  attendant  with  increased  roughness was 
approximated by measuring the  actual   length of l i n e  of the  interface 
separating  the copper plat ing and the  surface and dividing by the   s t ra ight -  
l ine  dis tance between the end points of the measurement. It was assumed 
that ,   s ince  the  surfaces  of  models 4 t o  8 were prepared by processes 
involving  the  unidirectional removal  of material ,   the  surface  area was 
then  proport ional   to   the  length of l i n e  of the  interface.  Models 9 and 10 
were measured y i t h  a surface  interferometer (Type L.C.A., No. 36) manufac- 
tured by La Precision Mdcanique (Par i s ) .  Numerous readings were taken in 
the   v i c in i ty  of the  stagnation  point in order t o   g e t  a fa i r ly   represent -  
ative  value.  Duplicates of  models 9 and 10 were also  sectioned and meas- 
ured by  means  of photomicrographs. The single  section  through  the  stagna- 
t ion   po in t  of these models did  not  provide  sufficient  information  to 
es tab l i sh  any re la t ionship  between the   l inear  measure along  the  interface 
and the  surface  area inasmuch as models 9 and 10 were hand polished and 
the  resul t ing  surface was probably random in   na ture .  The r e l a t ive  
inc reases   i n   l i nea l  measure  of the  interfaces  t o  the  projected  lengths 
are   included  in   table  I purely as a matter of i n t e r e s t  inasmuch a s   l i t t l e  
significance is attached  to  these  values.  

Heat-transfer  calculations .- Figure 13 presents a t yp ica l  example 
of the  variation  with t i m e  of the  rear-surface  temperature  at  the  stagna- 
t ion   po in t .  For  comparison, the  estimated  variation  with  time of the 
front-surface  temperature  as  calculated by the  methods of references 4 
and 5 are   a l so  shown. Reference 4 was used to   de f ine   t he  curve  near  the 
or ig in  where the method of reference 5 was least   accurate .  A maximum 
difference of approximately 360' F  between the   f ron t  and rear  surfaces 
was indicated by these methods. 

Figure 14  shows temperature  variations  normal to   the   longi tudina l  
center   l ine of t he  models a t   the   s tagnat ion   po in t  and a t  0.05 and 0 .1  inch 
r ad ia l ly  from the  center.  During the   t es t s ,   th ree  thermocouples  proved 
defective and no data   are   avai lable   for   these points. The da ta   fo r   t h i s  
f igure were taken   a t  0.7 second after  t ime  zero  for which time  the  heat- 
t ransfer   calculat ions were made. These temperature  gradients were very 
small and were neglected  in  the  determination of the  heat-transfer  coef- 
f ic ien ts   a t   the   s tagnat ion   po in t .  
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The heat-transfer  coefficients were determined i n   t h e  f irst  3/4 sec- 
ond of t h e   t e s t  i n  order   to  minimize  conduction e r rors  and  changes i n  
the  character of the  surfaces   resul t ing from the  impact  of  minute par- 
t i c l e s  of zirconia which are   carr ied by the  airstream. These pa r t i c l e s  
me  generated by thermal   act ion  in   the bed of zirconia b a l l s  which pro- 
vide  the  reservoir of heat  for  the  operation of t he   ho t   j e t   ( r e f .  1). 
The frequency  of  impact of these  par t ic les   has   not  been  determined  but 
it i s  su f f i c i en t ly  low t o  assume with  reasonable  assurance  that  the meas- 
ured  heat-transfer  coefficients are representative of the   o r ig ina l  sur- 
faces.  Radiation  interchanges between the model and the  heated  pebble 
bed  and  between the  model and the  surrounding air were negligible a t  the 
low temperatures a t  which these  data were evaluated.  Neglect of radia- 
t i on   l o s ses  and temperature  gradients normal to   t he   cen te r   l i ne  of the 
models permits  the  calculation of the  heat-transfer  coefficients by 
means of  the  following  approximate  expression: 

cPw dTB h =  - 
%tag - TF d t  

The slope dTB/dt w a s  measured  over a one-half  second of time  centered 
about t = 0.5.  A t  this  t ime,  the  temperature  gradients normal t o   t h e  
model surface were e s sen t i a l ly   i nva ian t   w i th  time as evidenced by the  
example of f igure 13 where it i s  seen  that   the   s lope of the  calculated 
front-surface  temperature i s  approximately  the same as t h a t  measured f o r  
the  rear   surface a t  th i s   t ime and  no gradient  correction i s  needed. 

RESULTS AND DISCUSSION 

Figure 15 presents  the  variation of the  stagnation-point  heat-  
transfer  coefficient  with  surface  roughness.  As a matter of i n t e re s t ,  
the   theoret ical   value computed by the  method of reference 6 with  the 
velocity  gradient a t  the  stagnation  point computed from reference 7 is  
a l so  shown. The  minimum measured heat-transfer  coefficient i s  about 
25 percent  greater  than  the  theoretical   value.  Comparisons  of some 
unpublished  data  with  values  calculated by theory have shown good agree- 
ment. The reason  for   the  re la t ively  large  experimental  minimum heat 
t r ans fe r  measured i n   t h e s e   t e s t s  as compared with  values  calculated by 
the  theory of reference 6 i s  not known at th i s   t ime.  With the  experi-  
mental accuracy of the  technique,  no  systematic  effect  of  changing  the 
sur face   rouhness  i s  observable i n  the  roughness  range  from 0 t o  approxi- 

m & c r o i n c h e s  rms. However, i n  the  roughness  range  greater t h z  
40 microinches,  there is’a t rend of increased  heat  transfer  with  increased 
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roughness.  Heating rates 
values were measured with 

up t o  73 percent  greater  than 
the  roughest  surfaces. 

Somewhat s imilar   resul ts   are   presented i n  reference 8 for   the  heat  d 
t r ansfer  at the  stagnation  point of  a hemisphere. Two values of rough- \:a 
ness were t e s t ed  over a range of wind-tunnel  operating  conditions. The ty). 
r e s u l t s  were correlated as a function of t he  roughness Reynolds number \$;' 
and a l so  show a region of l i t t l e  or no e f f ec t  of the  roughness  Reynolds$,?,\'. 
number fo r  low values of t h i s  parameter. Baughness  Reynolds number i s  ,/ %.:y 
dzaned  as  tE-product of free-stream Reynolds number per ?-&;%=e' 
root-mean-sauare  xowhness. A def in i te   t rend  of  increas'fag-heat  transfer 
with  increased  values of roughness Reynolds number i s  shown t o   e x i s t   a f t e r  . 
t h i s   i n i t i a l   i n v a r i a n t  zone. 

$; 

"... ""- 

The data  from the   p resent   t es t s  were normalized i n  terms of the  mini- 
mum measured heat   t ransfer  (model 8) and the   r e su l t s  were plotted  as a 
function of roughness  Reynolds number in   f i gu re  16. The da ta  of re fer -  , 
ence 8 are  also  included  in  this  f igure  for  purposes of comparison. The 
data of reference 8 seem to   ind ica te  a greater  increase  in  heat  transfer 
with  increasing  roughness Reynolds number than do the   resu l t s  of the  
present   tes ts .  

The heat- t ransfer   coeff ic ient   for  model 4 seems unusually low when 
compared with  the  value  for model 6 which was only   s l igh t ly  rougher  but 
experienced a much higher   heat ing  ra te .   Li t t le   s ignif icance i s  attached 
to   t he   f ac t   t ha t   t he   ca l cu la t ed  roughness fo r  model 4 is  qui te   d i f fe ren t  
from the  profilometer  value  (see  table I) since a rough  ground surface 
i s  inherently  subject  to  great  variation when considered on  a microscopic 
scale,   as may be seen from  examination of the  photomicrographs of the 
surface  presented  in  figure 12. This  difference i s  bel ieved  to  be the 
r e s u l t  of inadequate  sampling by the  photomicrographic  technique. It is  
apparent  from  examination of the  data  of  models 1, 2, and 3 tha t  some 
surface  parameter  other  than mean roughness must affect   the   s tagnat ion 
heat   t ransfer .  These  models experienced  widely  different  heating  rates 
but,  according t o   t h e  method of measurement,  had about  the same surface 
roughness.  Replotting  these  data  as  in  figure 17 implies  that  the  heating 
r a t e  was a function of the  macroscopic area  increase. The  mean surface 
roughness of these models was approximately 13 times  the  stagnation-point 
displacement  thickness of the boundary layer.   This  thickness was cal-  
cu la t ed   t o  be  on the  order of 0.001 inch by the  subsonic,  incompressible, 
two-dimensional relationship  given  in  reference 9. Model 5 (rough machined 
surface) had a  measured  microscopic  area  increase of 30.9  percent  over  the 
projected  area or very  nearly  the same as  the  macroscopic  area  increase 
of model 3 (unidirectional  grooves),  but showed much less  heating. The 
mean surface  roughness as calculated from the photomicrographs  (model 5 )  
was of the  sane  order of magnitude as  the  calculated  displacement  thick- 
ness of the boundary layer  and also  the same order as the lower l imi t  of 
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macroscopic measurement. On a macroscopic sca le ,   very   l i t t l e   sur face  
protrusion  through  the boundary layer must have occurred.  Likewise, 
the macroscopic area  increase must have  been very small. Thus, in   these  
t e s t s ,   t he  macroscopic area  increase becomes a l so  a measure of the sur- 
face  area which protrudes  through  the boundary layer  and suggests an 
explanat ion  for   the  re la t ively lower hea t ing   ra te   for  model 5 as com- 
pared  with model 3 .  

CONCLUDING BJMARKS 

The results of these   t es t s   ind ica te   tha t   the   hea t   t ransfer  a t  t he  
stagnation  point  varies  considerably  with  the  condition of the  surface 
a t  t h i s   po in t .   L i t t l e   e f f ec t  of roughness upon the  stagnation-point 
heat   t ransfer  was observed fo r  roughness  values below approximately 
40 microinches.  For  values of roughness larger   than 40 microinches, 
the  heat   t ransfer  w a s  shown t o  be a function  of  the  surface  roughness. 
A t  very  large  values  of  surface  roughness,  the data t e n d   t o  show t h a t  
the  heat   t ransfer  i s  dependent upon the macroscopic surface  area.  

Langley  Aeronautical  Laboratory, 
National  Advisory Committee for Aeronautics, 

Langley Field,  V a . ,  February 21, 1958. 

I 
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TABLE I 

DESCRIPTION OF TEST MODELS 

Model 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 - 

Surf  ace 

Hemispherical  pits 
Bidirectional  grooves 
Unidirectional  grooves 

Rough  grind 
Rough  machine 
Smooth  machine 
Smooth  grind 
As  received 

Polish 
Mirror  finish 

Measured  (’by 
mechanical 
methods ) 

3 -663 
3.202 
3.366 
3.600 
3.716 
3.632 
3.465 
3 * 737 
3 0575 
3.618 

”” 

”” 

”“ 

b40 
b450 
b45 
b20 
b12 
d15 
dl2 

Calculated 
(from 

photographs) 

“13,700 
a13 , ooo 
a13 , 000 

1,035 
‘70.2 

‘41.4 
‘28.3 
c18.7 
c9. 7 
‘8 .OO 

Area 
increase, 
(percent) 

13 
38.1 
32.2 
10 .o 
30.9 
2.75 
7.0 
4.0 
2.0 
1 . 0 5 

a 

bMeasured  with  Physicists  Research  Co.  Profilometer,  Model No. 11, Ty-pe Q. 
CCalculated  from  measurements  taken  directly  from  photomicrographs of duplicate 

dMeasured  with  surface  interferometer ( m e  L.C .A. , No. 36) manufactured  by La 

Calculated  from  direct  measurements  and  enlarged  photographs. 

specimens. 

Prdcision  Mdcanique  (Paris). 
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Model 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE I1 

TUNNEL  CONDITIONS  FOR  FLAT-FACE  MODELS 

Stagnation 
temperature, 
9 

Chamber 
ressure, 

lb sq in. ,  gage 

90 

90 

90 

90 

90 

90 

90 

90 

90 

90 

P Mach 
number 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

II.1111 1111111 11111 111111 
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b + v A l u m i n u m  oxide 

Model ,-Metal sting 

i 

Side View 

Figure 1.- ThermocoL. l e  locations for all models. All dimensions m e  
in inches. 



r 
(a)  Apparatus  assembled  for'testing. L-57-503 UI 8 

Figure 2.- Model  assembly  showing  (left  to  right)  model,  aluminum  oxide  insulator, and sting. G .  



( b )  Exploded view. L-57-504 

Figure 2.- Concluded. 



, . 

Figure 3 . -  Surfaces of models before  testing. L-57-294 G 



NACA RM L5&lO 15 

Figure 4 .- Model 1 (hemispherical pits)  before  testing. L-57-2g1 

Figure 5.-  Model 2 (bidirectional grooves) before testing. L-57-292 - 
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Figure 6 .- Model 3 (unidirectional  grooves)  before  testing. L-37-293 

Figure 7 .- Model 4 (rough grind)  before  testing. L-57-2195 

____I 

I 
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Figure 8.- Model 5 (rough machine) before t e s t i n g .  L-57-2194 

Figure 9. - Model 6 (smooth machine)  before  testing. L-57-2193 
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Sections A-A  and 6 - B  

Figure 10.- Surface of model 2 .  
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Se'ction A - A  

Figure 11.- Surface of model 3 .  



20 NACA RM L58ClO 

Sample 1 , 
Calculated roughness, 84.94 pin. rms 

Sample 2 Calculated  roughness, 50.50 pin. rms 

Sample 3 Calculated  roughness, 77.49 pin. rms 

H 
0.001 in. 

(a)  Model 4 (rough grind) . 
Figure 12.- Photomicrographs  of  typical  surface  cross  sections. 
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Sample 1 Calculated  roughness, 1228. pin. rms 

sample 2 Calculated  roughness, 906. pin. rms 

Calculated  roughness, 971. pin. rms 

H 
0.001 in. 

L-58-133 

(b) Model 5 (rough machine) . 
Figure 12.- Continued. 



22 NACA RM L5&10 

Sample 1 Calculated  roughness, 36.23 pin. rms 

Sample 2 Calculated  roughness, 14.71 pin. r m s  

Sample 4 Calculated  roughness, 44.31 pin. 'ms 

H 
0.001 in. 

L-38-134 

( c )  Model 6 (smooth machine). 

Figure 12. - Continued. 
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Sample 1 Calculated  roughness, 30.30 pin. r m s  

Sample 2 Calculated  roughness, 31.91 pin. rms 

Sample 3 Calculated roughness, 22.56 pin. r m s  

t-"I 
0.001 in. 

L-58-135 

(d) Model 7 (smooth grind) . 
Figuse 12.- Continued. 
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Sample 1 Calculated  roughness, 22.09 pin. r m s  

sample 2 Calculated  roughness, 7.28 pin. rms 

Sample 3 Cdcdated roughness, 18.36 pin. rms 

Sample 4 

l”--l 
0.001 in. 

L-58-136 

(e)  Model 8 (as received) . 
Figure 12.- Continued. 
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I 

Sample 2 Calculated  roughness, 9.70 pin.  rms - 
0.001 in .  

L-58-137 

(f) Model 9 (polish) . 
Figure 12.- Continued. 



26 MCA RM L58ClO 

Sample 1 Calculated  roughness, 10.44 pin. rms 

Sample 2 Calculated  roughness,  12.37 pin. rms 

Sample 3 Calculated  roughness, 7.00 pin. rms 

-Sample 4 Calculated  roughness,  2.00 pin. rms 

M 
0.001 in. 

( g )  Model 10 (mirror f in i sh )  . 
Figure 12.- Concluded. 
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T 0 F 

t ,  sec  

Figure 13.- Typical  temperature  time  history of test  models.  Model 1, 
thermocouple 3 .  
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Figure 14.- Temperature  gradient  laterally  across  face of model; 
t = 0.7 second. 
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v) Figure 13.- Variation  of  stagnation-point  heat-transfer  coefficient  with  surface  roughness. 
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Figure 16.- Variation  of  heat-transfer  coefficient  with  roughness  Reynolds  number. 
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Figure 17.- Variation of heat-transfer  coefficient with r a t i o  of actual  surface  area t o  pro- 
jected  surface area for  macroscopic  roughnesses. 
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